A quick guide to

What is FreshMarker?

is a simple and embedded Java 21 template engine,
which is inspired by FreeMarker. Most of the basic concepts are the
same.

Integration
Maven Dependency

<dependency >
<groupId>de.schegge</groupIld>
<artifactId>freshmarker</artifactId>
<version>1.9.0</version>
</dependency >

Template Evaluation

String content = "Hello ${first} ${last}!”;
Map<string, Object> model = Map.of(

"first”, "Jens"”, "last", "Kaiser);
Configuration configuration = new Configuration();
TemplateBuilder builder = configuration.builder();
Template template = builder.getTemplate(”tst"”, content);
String output = template.process(model);

This template produces the output "Hello Jens Kaiser!".

Template Reduction

Templates can be partially evaluated. The newly created template
saves you from having to evaluate static values again later.

Map<string, Object> model = Map.of ("first"”,
Template reduced = template.reduce(model);

"Jens");

This new template works internally on "Hello Jens ${last}!".

Model

The model contains all the data, that can be used in the template. A
large number of types are automatically supported so that no con-
versions need to take place when using your own data.

Unless otherwise stated, the names refer to the corresponding
classes in JDK.

Primitives

Primitives are all Java types whose value can be output directly in
the template.

String, StringBuilder, StringBuffer, Boolean, AtomicBoolean,
Byte, Short, Integer, Long, Float, Double, BigInteger, BigDecimal,
AtomicInteger, AtomicLong, Locale, URI, URL, UUID, Date, Time,
LocalDate, LocalTime, LocalDateTime, ZonedDateTime, Instant,
Period, Duration, Year, YearMonth, MonthDay

Literals of Boolean, String, Integer and Double can be used in the
template.

Enums

All Java Enum types can be used as primitive types. To display them,
the toString method is used. This can be overridden for an Enum.

Null

Processing NULL usually leads to errors. There are three ways to
avoid these errors in . The Default Operator, the Ex-
istence Operator and the comparison with the null literal.

The default operator (!) replaces a null value with its optional pa-
rameter or the empty string.

The Existence Operator (2?) returns false, if the value is null, other-
wise true.

A comparison with the null literal can be used to check whether a
value is null.

Sequences

Everything that implements List interface can be used as a sequence.
Literal Sequences can be used in the template

[1, 2, 3, 4, 5, 6, 7]
['eins', 'zwei', 'drei']

Hashes

Everything that implements the Map interface with String keys and
also Beans and Records can be used as Hash.

Ranges
A range is an numeric interval with a lower limit.
Right-unlimited Range

A right-unlimited range has no upper limit. It has the form x. . where

x can be any numerical expression.

-10.. lower bound —10
a.. lower bound in the numeric variable a

Right-limited Range

A right-limited range has a lower and an upper limit. It has the form
X..y or x..<y where x and y can be any numeric expression. The
second form describes a range with an exclusive upper limit.

-10..<0 lower bound —10 and upper bound —1

a..b lower bound in variable a and upper bound in b
10..0 lower bound 1 and upper bound 10

a..<b lower bound in variable a and an exclusive upper

bound in b

Length-limited Range

A length-limited range is a right-limited range with a different syntax
a..*c. Here a again corresponds to the lower limit of the range and
¢ indicates the size of the range.

nonn

'Gonzo’, "', "Gonzo",

23.5

Boolean true, false
Integer 42

String
Double

4..%-5
a..*b

lower bound 4 and upper bound 0
lower bound in variable a4 and an range size in ¢

Slices

Slices define slice operators on other data types. These operators
can be applied to Range, List, and String values. The Slices are de-
scribed by range expressions in square brackets. The range speci-
fies the lower and upper limits of the Slice. With inverted ranges,
the slice operation produces an inverted result.

Optionals

Optionals of type java.util.Optional are also supported in the
model. The empty optionals are interpreted as NULL and all other
values are interpreted as instances of generic type.

Lazys

Not all values in the model are used and if their provision is
costly, then they can be loaded lazily. offers the
TemplateObjectSupplier class for this purpose.

Map<String, Object> model = Map.of(

"tree"”, TemplateObjectSupplier.of(() -> fromDB(name))

)3

template.process(model);

Comments

Comments can be placed anywhere inside the template. They can
be used to clarify the details of the template.

<!-- Comment -->
<#-- Comment -->

Expression

Expressions can be used in Interpolations and in many other places.
A simplified overview shows the possibilities.

Expression OrExpr;
OrExpr AndExpr C C'"|" | "II" | "*") AndExpr)=*;
AndExpr EqualityExpr (('&'|'&&') EqualityExpr)*;
EqualityExpr RelExpr [('='|'=="]"'!=") RelExprl;
RelExpr RangeExpr [('>'|'>="|'<'|] '<=') RangeExpr 1J];
RangeExpr AddExpr [('.."|'..<"|"'"..x) [AddExpr 1 1]
AddExpr MultExpr (('+' |') MultExp)*;
MultExpr UnaryExpr (('*'['/"|'%') UnaryExpr)*;
UnaryExpr PlusMinusExpr | NotExpr | DefaultExpr;
PlusMinusExpr : ('+'|'-"') DefaultExpr;
NotExpr "1" DefaultExpr;
DefaultExpr PrimaryExpr '!' [PrimaryExpr 1;
PrimaryExpr BaseExpr (DotKey | DynamicKey

| MethodInvoke | BuiltIn | Exists);
BaseExpr Identifier | Literal | Parenthesis

| BuiltinVar;
Parenthesis : '(' Expression ')';
DotKey : '.' Identifier;
DynamicKey : '[' Expression ']';
MethodInvoke : '(' [ArgsList] ')';
BuiltinVariable : '.' Identifier!

Directives

Directives give the template structure. Depending on conditions,
their contents are output once, multiple times, or not at all.

List Directive

A List Directive directive prints its contents for each element of a Se-
quence or Hash. The optional looper variable gives access to the loop
metadata. The list can be reduced by the optional attributes filter,
offset and limit.

<#list sequence as item with looper>
${looper}. ${item}
</#list>

The hash keys can be sorted by the optional sorted attribute.

<#list hash as key sorted asc, values with looper>
${looper}. ${key} $value}
</#list>

If Directive

An If Directive prints the content for which the first expression in the
If or one of the optional Elself parts results in true. If no expression
applies and there is an optional Else part, then its content is printed.

<#if number <= 0>zero or less!

<#elseif number == 1>one!
<#else>two or biggerQ
</#if>

Switch Directive

A Switch Directive prints the content for which the expression in the
optional Case parts first match the expression in the Switch part. If
no expression applies and there is an optional Default part, then its
content is printed.

<#switch number>

<#case 0>zero

<#case 1>one
<#default>two or bigger
</#case>

A second variant uses On parts instead of Case parts. These parts
can match multiple expressions.

<#switch number>

<#on @, 1>zero or one
<#on 2, 3>two or three
<#default>four or bigger
</#case>

...and much more

Further directives (Brick, Setting, Outputformat, Include, Import, Var,
Set, Macro) can be found in the documentation.

Interpolation

Interpolations produce output for the values in the model. The
syntax of an interpolation is ${expression}, with an Expres-
sion described previously. An Interpolation must evaluate to a

Primitive type. For example, if the result is a Se-
quence, an exception is thrown. If the result of the evaluation is the
special value NULL, then an exception is also thrown. An interpola-
tion must always return a result.

Built-Ins

Built-Ins are interpolation operations, which are called on the cur-
rent value of the interpolation.

The following list is not complete and only shows the more popular
built-ins.

Boolean Built-Ins

name command output
computer true?c true
human false?h falsch
then false?then(23, 42) 42

String Built-Ins

name command output
upper case 'TesT'?upper_case TEST
lower case 'TesT'?lower_case test
capitalize "tesT'?capitalize Test

camel case 'camel-case’'?camel_case camelCase
snake case 'snakeCase’ ?snake_case snake_case
kebab case 'kebapCase ' ?kebap_case kebap-case
slugify 'One two three'?slugify one-two-three
trim " trim '?trim trim
contains "test’'?contains('t’) true

starts with 'Test'?starts_with('t") false
ends with 'Test'?ends_with('t") true
length "test’?length 4

esc '<>"?esc('HTML") &1t;8>
left padding 'test’'?left_pad(6, '#') #ittest
right padding 'test’'?right_pad(6, '#') test##
center padding 'test'?center_pad(6,'#') #test#
mask 'one two'?mask(2) *** o
mask full 'one two'?mask_full('?") ??272?7?27?

Number Built-Ins

name command output
computer 67?c 6
human 6?h six
format 2.5??format ("%.2f") 2.50
absolute -5%abs 5

sign -57?sign -1

min 23?min(42) 23
max 237min(42) 42
roman 2012?roman MMXII

Looper Built-Ins

These are Built-Ins on the Looper Variable in a List-Directive. The
values change with every loop.

name command output
is first looper?is_first true
is last looper?is_last false
has next looper?has_next false
index looper?index 0
item parity ~ looper?item_parity even
item cycle looper?item_cycle('A', 'B', 'C") A

Temporal Built-Ins
Number Built-Ins

name command output

computer dateTime?c 1968-08-24112:34:56
human yesterday?h yeasterday

since yesterday?since P1D

date dateTime?date 1968-08-24

time dateTime?time 12:34:56

string date?string('dd. MMMM')} 24. August

...and much more

Further Built-Ins for (Enum, Sequence, Locale, Range, Duration, Period,
Version) can be found in the documentation.

Built-In Variables

Some information is available as Built-In Variables. These include the
following.

name description

.now the current date and time

.locale the current locale

.version the current FreshMarker version
Extensions

FreshMarker File File and Path typ support.
FreshMarker Money Money typ support based on Moneta

FreshMarker Random Random typ support.

Getting started with

Project:
Documentation:

Based on a Gverleaf cheat sheet template

https://javamoney.github.io/ri.html
https://gitlab.com/schegge/freshmarker
https://schegge.gitlab.io/freshmarker
https://overleaf.com

	What is FreshMarker?
	Integration
	Maven Dependency
	Template Evaluation
	Template Reduction

	Model
	Primitives
	Enums
	Null
	Sequences
	Hashes
	Ranges
	Right-unlimited Range
	Right-limited Range
	Length-limited Range

	Slices
	Optionals
	Lazys

	Comments
	Expression
	Directives
	List Directive
	If Directive
	Switch Directive
	...and much more

	Interpolation
	Built-Ins
	Boolean Built-Ins
	String Built-Ins
	Number Built-Ins
	Looper Built-Ins
	Temporal Built-Ins
	Number Built-Ins
	...and much more

	Built-In Variables
	Extensions
	Getting started with FreshMarker

